Product Differentiation and Oligopoly: a Network Approach

Bruno Pellegrino
 University of Maryland

Autoridade da Concorrência 2023 Competition Policy Award Webinar

Research Question

- Motivation: large dispersion in markups across firms
- Rising level \& dispersion (De Loecker, Eeckhout \& Unger, 2020)
- Rising industry concentration (Kwon et al. 2022)
- Research Question: what's behind this heterogeneity? What's driving these trends? What are the welfare implications?
- Consumer surplus and deadweight loss due to oligopoly
- Challenge: IO question in a macroeconomic setting:
- Standard IO tools are not available (scalability, lack of data)
- No systematic, objective way to define product markets.

This Paper

- Methodological contribution: bring IO in macroeconomics.
- Theory of oligopoly and markups in general equilibrium
- Forget about industries: in this model, oligopolistic firms compete in a network of product market rivalries.
- New demand system: Generalized Hedonic-Linear (GHL).
- Taken to the data (and validated) for universe of US public firms, using product similarity data by Hoberg \& Phillips (2016).
- Decompose markups into 2 forces: productivity and centrality.
- Welfare measurement: large, increasing oligopoly deadweight loss (12.7% of total surplus in 2019), major distributional effects.

Literature

- Rising Markups and Industry Concentration: De Loecker, Eeckhout \& Unger (2020), Grullon, Larkin \& Michaely (2019); Kwon, Ma \& Zimmermann (2021), Eeckhout \& Veldkamp (2022).
- Distortions, Input/Output, Micro Origins of Aggregate TFP: Gabaix (2011); Acemoglu, Carvalho, Ozdaglar, Tahbaz-Salehi (2012); Baqaee \& Farhi (2020); Bigio \& La'O (2020); Edmond, Midrigan \& Xu (2019); Carvalho, Elliot \& Spray (2022);
- Hedonic Demand/Empirical IO: Lancaster (1968); Rosen (1974); Epple (1987) Berry, Levinsohn \& Pakes (1994); Nevo (2001)...
- Network Games: Ballester, Calvo-Armengol \& Zenou (2006); Galeotti, Golub, Goyal, Talamer \& Tamuz (2022).
- Text Analysis/Product Similarity: Hoberg \& Phillips (2016).

Theory

Generalized Hedonic-Linear Demand

- $i=1,2, \ldots, n$ firms that behave as oligopolists.
- Hedonic demand: each firm's product is a bundle of characteristics (Lancaster, 1968; Rosen, 1974; Epple, 1987, Berry, Levinsohn \& Pakes 1994; etc.)
- 1 unit of product i provides:
- 1 unit of an idiosyncratic characteristic i
- a vector of k common characteristics \mathbf{a}_{i} (length 1)

A basic example: 2 firms, 2 characteristics

Aggregating common characteristics

Characteristics (Nutrient Intake)

Matrix of Coordinates (Nutrition Facts)

Product Bundle

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k n}
\end{array}\right]\left[\begin{array}{c}
q_{1} \\
q_{2} \\
\vdots \\
q_{n}
\end{array}\right]
$$

$$
\mathbf{x} \quad=
$$

Aq

Defining Cosine Similarity

Representative Consumer-Worker-Investor

- Quadratic utility $U(\mathbf{x}, \mathbf{y}, H)=$

$$
\alpha \cdot \sum_{k=1}^{m}\left(b_{k}^{x} x_{k}-\frac{1}{2} x_{k}^{2}\right)+(1-\alpha) \sum_{i=1}^{n}\left(b_{i}^{y} y_{i}-\frac{1}{2} y_{i}^{2}\right)-H
$$

- $H=$ hours worked - numeraire
- Consumer faces vector of prices \mathbf{p} and chooses demand \mathbf{q}, subject to profits and labor income being $\geqslant \mathbf{p} \mathbf{\prime} \mathbf{q}$.

Inverse Demand

$$
\mathbf{p}=\mathbf{b}-(\mathbf{I}+\mathbf{\Sigma}) \mathbf{q}
$$

where

$$
\boldsymbol{\Sigma} \stackrel{\text { def }}{=} \alpha\left(\mathbf{A}^{\prime} \mathbf{A}-\mathbf{I}\right)
$$

Cost Function and Competition

- Cost function (can be relaxed): $h_{i}=f_{i}+c_{i}^{0} q_{i}+\frac{1}{2} \delta_{i} q_{i}{ }^{2}$
- Cournot Competition: firm i chooses supply q_{i} to maximize profits function π_{i} (also quadratic)
- (Linear-quadratic) Network game
- Ballester, Calvó-Armengol \& Zenou, 2006
- Why? the matrix of cosine similarities $\mathbf{A}^{\prime} \mathbf{A}$ (proportional to $\boldsymbol{\Sigma}$) can be thought of as an adjacency matrix of a network

Cournot-Nash Equilibrium

The expression above can be shown to be a measure of network centrality (Katz-Bonacich)

Hedonic-Adjusted Productivity

- Accounts for product quality
- Volumetric-invariant
- Comparable across widely-different firms

Decomposing Markups

Monopolistic Markup
 $$
=\left(1+\omega_{i}\right) / 2
$$

$$
\mu_{i}=\chi_{i}+\left(1-\chi_{i}\right) \bar{\mu}_{i}
$$

Product Market Centrality

Depends on the entire matrix of cosine
similarities $\mathbf{A}^{\prime} \mathbf{A}$. The profit share of surplus
is a decreasing function of χ_{i} alone

Data and Validation

Hoberg \& Phillips (2016 JPE) Product Similarity

- By law, every public corporation in the US has to file SEC form 10-K on a yearly basis.
- First 6-10 pages contain the "Business Description".
- HP created time-varying measures of cosine similarity between firms by text-mining these business descriptions.
- Solve long-standing problems with NAICS/SIC: static, binary do not reflect product market competition, can be manipulated.
- Highly incentive compatible - standard in finance: use of NAICS and SIC is no longer considered acceptable to capture product market rivalries, at least for top finance journals.

Construction

$$
\mathbf{v}_{i}=\left[\begin{array}{c}
v_{i, 1} \\
v_{i, 2} \\
\vdots
\end{array}\right] \quad \cos _{i j}^{\mathrm{HP}} \stackrel{\text { def }}{=} \frac{\mathbf{v}_{i}^{\prime} \mathbf{v}_{j}}{\sqrt{\left\|\mathbf{v}_{i}\right\|\left\|\mathbf{v}_{j}\right\|}}
$$

Identification: bijective mapping words \rightleftarrows characteristics, \mathbf{a}_{i} and \mathbf{v}_{i} are collinear up to permutation $\Rightarrow \mathbf{a}_{i} \mathbf{a}_{j} \equiv \cos _{i j}{ }^{\mathrm{HP}}$

Identification

- Compustat: Revenues $\left(p_{i} q_{i}\right)$, COGS $\left(\mathrm{TVC}_{i}\right)$, SG\&A $\left(f_{i}\right)$.
- Assume $\delta_{i}=0$ (later relaxed). Only one free parameter: α.
- Proposition: $\partial \log p_{i} / \partial \log q_{j}$ is observed for firm pair (K,Q):

$$
\alpha=-\frac{\varepsilon_{\mathrm{KQ}} \cdot p_{\mathrm{K}} q_{\mathrm{K}}+\varepsilon_{\mathrm{QK}} \cdot p_{\mathrm{Q}} q_{\mathrm{Q}}}{2 \cdot \cos _{\mathrm{KQ}}^{\mathrm{HP}} \cdot \sqrt{p_{\mathrm{K}} q_{\mathrm{K}}-\mathrm{TVC}_{\mathrm{K}}} \cdot \sqrt{p_{\mathrm{Q}} q_{\mathrm{Q}}-\mathrm{TVC}_{\mathrm{Q}}}}
$$

- Every other object is identified in closed form (correct units).

Identification

$$
\begin{gathered}
q_{i}=\sqrt{\pi_{i}} \\
c_{i}=\frac{\mathrm{TVC}_{i}}{q_{i}} \\
\mathbf{b}=(2 \mathbf{I}+\boldsymbol{\Sigma}) \mathbf{q}+\mathbf{c}
\end{gathered}
$$

			Demand Elasticity $\left(\frac{\partial q_{i}}{\partial p_{j}} \cdot \frac{p_{j}}{q_{i}}\right)$	
Market	Firm i	Firm j	Micro Estimate	GHL $($ text-based $)$
Auto	Ford	Ford	-4.320	-5.197
Auto	Ford	General Motors	0.034	0.056
Auto	Ford	Toyota	0.007	0.017
Auto	General Motors	Ford	0.065	0.052
Auto	General Motors	General Motors	-6.433	-4.685
Auto	General Motors	Toyota	0.008	0.005
Auto	Toyota	Ford	0.018	0.025
Auto	Toyota	General Motors	0.008	0.008
Auto	Toyota	Toyota	-3.085	-4.851
Cereals	Kellogg's	Kellogg's	-3.231	-1.770
Cereals	Kellogg's	Quaker Oats	0.033	0.023
Cereals	Quaker Oats	Kellogg's	0.046	0.031
Cereals	Quaker Oats	Quaker Oats	-3.031	-1.941
Computers	Apple	Apple	-11.979	-8.945
Computers	Apple	Dell	0.018	0.025
Computers	Dell	Apple	0.027	0.047
Computers	Dell	Dell	-5.570	-5.110

Variable: $\log \left|\frac{\partial q_{i}}{\partial p_{j}} \cdot \frac{p_{j}}{q_{i}}\right|$, residualized on $(i=j)$ dummy and Market Fixed Effects

Markups: Time Series

Markups: Cross-Section

Empirics

Distribution of Hedonic-Adjusted Productivity

Distribution of Product Market Centrality

Total Surplus and its Distribution

Deadweight Loss from Oligopoly

Robustness \& Extensions

- Private and foreign firms, entry and exit
- Aggregation result: add competitive fringes of atomistic firms in the form of a representative firms.
- Can be located using firm-sector similarity from FHP.
- Non-flat marginal cost
- Exclude "non-tradable" industries
- Bertrand
- Multi-product firms (using Compustat Segments)
- Input-Output Linkages (using Atalay et al. 2011 IO data)

Diversion Ratio

To evaluate a merger's anti-competitive potential, the FTCDOJ merger guidelines recommend looking at Diversion Ratios:

Diversion Ratio $_{i j} \stackrel{\text { def }}{=} \frac{\partial q_{i}}{\partial p_{j}}\left(\frac{\partial q_{j}}{\partial p_{j}}\right)^{-1}=\frac{(\mathbf{I}+\boldsymbol{\Sigma})_{i j}^{-1}}{(\mathbf{I}+\boldsymbol{\Sigma})_{j j}^{-1}}$

M\&A Activity: Diversion Ratios

Take-aways

- A new GE theory of oligopoly with hedonic demand.
- Estimated for Compustat using 10-K product similarities.
- Distribution of markups is jointly determined by productivity and product market centrality.
- Both have undergone significant changes
- Rising Oligopoly Power
- increasing deadweight loss
- lower consumer surplus share.

I share the data! (elasticities, centrality, productivity...)

The Great Startup Sellout and the Rise of Oligopoly

Florian Ederer Yale SOM

Bruno Pellegrino
U. of Maryland

Autoridade da Concorrência
 2023 Competition Policy Award Webinar

What is driving the increase in oligopoly?

VC-backed startup exits (1985-2019)

\square Initial Public Offerings \square Acquisitions

Entrant Productivity Premium

$$
\mathrm{EPP}_{i}=\frac{2 q_{i}-\sqrt{f_{i}}}{b_{i}-c_{i}-2 q_{i}+\sqrt{f_{i}}} .
$$

Entrant Productivity Premium

GAFAM Centrality

thank you

