## PASS-THROUGH AND COMPETITION

**Christos GENAKOS** 

University of Cambridge, AUEB, CEP & CEPR





## Pass-through: why do we care?

#### Mergers and antitrust

- Efficiencies: benefit (passing-on) to consumers
- Price effects: incentive to raise price (to pass-on "upward pricing pressure")
- Vertical agreements: cost savings, elimination of double marginalization

#### Damages actions

- Passing-on defense: direct customer of cartelist to pass-on overcharge
- Passing-on offence: indirect customer of cartelist to be harmed by pass-on of overcharge

#### In general:

- Any counterfactual assessment of a policy intervention (regulation, state aid)
- Other: Tax incidence, exchange rate pass-through, opening up to trade



#### **Outline**

1. Insights from economic theory

2. Evidence from empirical research

Competition and Pass-Through: some new evidence



## Pass-through: basic concepts

- ➤ Absolute pass-through is the degree to which a given absolute change in caused causes a given absolute change in price.
  - ✓ If a €1 cost increase causes a €1 price increase: absolute pass-through equals 1 or 100%
  - ✓ If a €1 cost increase causes a €0.5 price increase: absolute pass-through equals 1/2 or 50%
  - ✓ If a €1 cost increase causes a €2 price increase: absolute pass-through equals 2 or 200%
- ➤ Pass-through elasticity gives the percentage increase in price arising from a 1% increase in cost.
  - ✓ If the pass-through elasticity is 1, then 10% increase in cost leads to a 10% increase in price.
  - ✓ If the pass-through elasticity is 0.5, then 10% increase in cost leads to a 5% increase in price.



#### THE IMPACT OF A TAX OR SUBSIDY

• specific tax Tax of a certain amount of money per unit sold.

#### Incidence of a Tax

 $P_b$  is the price (including the tax) paid by buyers.  $P_s$  is the price that sellers receive, less the tax.

Here the burden of the tax is split evenly between buyers and sellers.

Buyers lose A + B.

Sellers lose D + C.

The government earns A + D in revenue.

The deadweight loss is B + C.





#### THE IMPACT OF A TAX OR SUBSIDY

#### Impact of a Tax Depends on Elasticities of Supply and Demand



Price  $Q_1 Q_0$ Quantity (b)

(a) If demand is very inelastic relative to supply, the burden of the tax falls mostly on buyers.

UNIVERSITY OF

**(b)** If demand is very elastic relative to supply, it falls mostly on sellers.



## Pass-through: tax incidence analogy

➤ The extent of (absolute) pass-through depends on the relative magnitudes of the slopes of demand and supply.

$$\rho = \frac{1}{1 + \frac{elasticity\ of\ demand}{elasticity\ of\ supply}} = \frac{1}{1 + \frac{\varepsilon_D}{\varepsilon_S}}$$

- ✓ If the elasticity of demand is large relative to the elasticity of supply, the pass-through rate would be low.
- ✓ If the elasticity of demand is small relative to the elasticity of supply, the pass-through rate would be high.
- Identical outcome if the tax is imposed to firms or consumers!



## Pass-through: perfect competition

Industry-wide pass-through under perfect competition is:

$$\rho = \frac{1}{1 + \frac{elasticity\ of\ demand}{elasticity\ of\ supply}} = \frac{1}{1 + \frac{\varepsilon_D}{\varepsilon_S}}$$

- ✓ If industry supply is upward sloping and demand is downward sloping, equilibrium prices will increase by *less than* 100% even in the perfectly competitive scenario.
- ✓ The pass-through rate will decrease as demand becomes more elastic and/or supply become less elastic.
- Firm-specific pass-through will be 0 (atomistic price-takers).



## Pass-through: monopoly



- After a change in mc the monopolist re-optimizes.
- The extent of the required output adjustment, Δq, will depend on the slope of the marginal revenue curve.
- The increase in price,  $\Delta p$ , depends on the rate at which price increases as output contracts, i.e. the slope of the demand



## Pass-through: monopoly

Pass-through under monopoly with constant marginal cost is:

$$\rho = \frac{slope \ of \ demand}{slope \ of \ marginal \ revenue}$$

$$= \frac{1}{2 + elasticity \ of \ slope \ of \ inverse \ demand}$$

- ✓ the elasticity of slope of inverse demand is the proportionate rate at which
  the slope of inverse demand changes as output is increased, so it
  captures the demand curvature.
- $\triangleright$  If D linear, curvature = 0, hence pass-through =  $\frac{1}{2}$ .
- ➤ If D concave, pass-through smaller than the linear case.
- If D convex, pass-through can exceed 100% (over-shifting).



## Demand curvature and pass-through





#### Relevance of demand curvature: monopoly example





## Pass-through: monopoly

Pass-through under monopoly more generally is:

$$\rho = \frac{\textit{slope of demand}}{\textit{slope of marginal revenue} - \textit{slope of margninal cost}}$$

If MC slopes upwards, a contraction in output would lead to a reduction in MC as well as an increase in MR. Hence, smaller reduction in output will be needed.

$$=\frac{1}{1+\frac{\varepsilon_D-1}{\varepsilon_S}+\frac{1}{\varepsilon_{ms}}}$$

- ✓  $\varepsilon_D$  − 1 essentially because price>mc
- $\checkmark$   $\varepsilon_{ms}$  is the elasticity of the inverse marginal consumer surplus and provides a measure of demand curvature



## Pass-through: oligopoly

Industry-wide pass-through under symmetric oligopoly is:

$$\rho = \frac{1}{1 + \frac{\theta}{\varepsilon_{\theta}} + \frac{\varepsilon_{D} - \theta}{\varepsilon_{S}} + \frac{\theta}{\varepsilon_{ms}}}$$

- $\checkmark$   $\theta$  is the conduct parameter (0 perfect competition 1 monopoly)
- ✓  $\varepsilon_D \theta$  essentially because price>mc
- $\checkmark$   $\varepsilon_{ms}$  is demand curvature
- > Asymmetric oligopoly: same ideas, more complicated formula
- Firms specific pass-through is *less* than industry specific



## Pass-through and Vertical Relationships

- Vertical relationship and vertical contractual restraints necessitates an analysis between "upstream" and "downstream" firms along the vertical chain of production.
- In general:

```
overall pass – through
= upstream pass – through × downstream pass – through
= \rho_U \cdot \rho_D = \rho^2
```

- The overall pass-through will be less than upstream pass-through if  $\rho < 1$  (cost absorbing scenario), or greater than upstream if  $\rho > 1$  (cost amplification scenario).
- $\triangleright$  Vertical integration pass-through would be  $\rho$ .



### **Outline**

1. Insights from economic theory

2. Evidence from empirical research

Competition and Pass-Through: some new evidence



## Quantitative evidence on Pass-through

- ➤ Large literature in international economics and macro looking at exchange rate pass-through, typically elasticity < 1
  - Local distribution costs drive a wedge between import costs and prices
  - Demand is not highly convex
  - Multinational firms' ability to source inputs from different countries
- Wide range of pass-through rates across industries
- ➤ Even for the same industry-wide cost change, individual firms adjust their prices at different rates.
- Firm-specific pass-through smaller to industry-wide passthrough



## Quantitative evidence on Pass-through

- What about market power? Mixed results
  - ✓ Alm, Sennoga and Skidmore (2009) find a lower passthrough in rural (less competitive) than in urban (more competitive) gasoline markets in the US.
  - ✓ Doyle and Samphantharak (2008) and Stopler (2017) find that greater brand concentration and market power are associated with larger pass-through rates in the gasoline market.
- Competition = firms located within a given geography
- ❖ But firm location endogenous! Entry literature in IO.



### **Outline**

1. Insights from economic theory

2. Evidence from empirical research

3. Competition and Pass-Through: some new evidence



## Pass-through and Competition

- Understanding how firms pass cost shocks through to prices of fundamental importance across many fields
  - ✓ Public economics, international trade, productivity, IO (price discrimination, merger analysis, sectors: health, energy), macro (fiscal & monetary transmission)
- Theory: competition is a key determinant of pass-through
- Empirics: well-established research exploiting variability in costs (sales taxes, exchange rates, input prices) to infer the magnitude of the pass-through
- However, very little evidence how pass-through varies with competition
- Typically, number of competitors "located" nearby (arbitrary and problematic) with no attention to market structure endogeneity



## This paper

- Think of the ideal experiment:
  - exogenous variation in market size,
  - significant and unexpected common shock, and,
  - good control for local market conditions (no way!)
- Welcome to Greece: where the impossible becomes reality!
  - ✓ Islands of different size (given by the God(s))
  - ✓ Financial crisis forces the government to raise taxes (three times!)
  - ✓ Government increases excise duty for all gasoline products except for heating diesel (deep down they are randomistas...)
- Our goal: measure how pass-through varies with competition in small isolated oligopolistic markets of different size
  - Heterogeneity across products (Unleaded 95 vs 100 vs Diesel)?
  - Different tax changes (three different changes in excise duties)?
  - Speed of adjustment?
  - Alternative market definitions?



## Theory

#### Discussion based on Weyl and Fabinger (2013):

- Symmetric firms & perfect competition:  $\rho = \frac{1}{1 + \frac{\varepsilon_D}{\varepsilon_S}}$
- Monopoly :  $\rho = \frac{1}{1 + \frac{\varepsilon_D 1}{\varepsilon_S} + \frac{1}{\varepsilon_{ms}}}$
- Symmetric imperfect competition:  $\rho = \frac{1}{1 + \frac{\theta}{\varepsilon_{\theta}} + \frac{\varepsilon_{D} \theta}{\varepsilon_{S}} + \frac{\theta}{\varepsilon_{ms}}}$
- Asymmetric: same ideas, more complicated formula
- In general, the sign and magnitude of ↑ competition on pass-through is ambiguous.
- If  $\begin{cases} mc\ constant \\ \theta\ constant \end{cases} \ \text{then}\ \rho = \frac{1}{1+\theta} \ \text{as competition}\ \uparrow, \ \text{pass-through}\ \uparrow \\ demand\ linear \end{cases}$



## Industry background

- ❖ Petroleum industry: refineries→ wholesalers → retailers
- Taxation of petroleum products:

$$P_{retail} = (P_{refinery} + taxes\&fees + margins)(1 + VAT)$$

Financial/debt crisis: significant increase in excise duties

| TABLE 1 - EXCISE DUTY TAX CHANGES (€ cents per litre and Δ%) |             |              |        |                |             |
|--------------------------------------------------------------|-------------|--------------|--------|----------------|-------------|
|                                                              | (1)         | (2)          | (3)    | (4)            | (5)         |
| Type of energy product                                       | Unleaded 95 | Unleaded 100 | Diesel | Super (leaded) | Heating oil |
| before                                                       | 41          | 41           | 30.2   | 42.1           | 2.1         |
| 10-Feb-10                                                    | 53          | 53           | 35.2   | 54.1           | 2.1         |
|                                                              | (29%)       | (29%)        | (17%)  | (29%)          | (0%)        |
| 04-Mar-10                                                    | 61          | 61           | 38.2   | 62.1           | 2.1         |
|                                                              | (15%)       | (15%)        | (9%)   | (15%)          | (0%)        |
| 03-May-10                                                    | 67          | 67           | 41.2   | 68.1           | 2.1         |
|                                                              | (10%)       | (10%)        | (8%)   | (10%)          | (0%)        |

No change in excise duty for <u>heating oil</u> (chemically identical to diesel, just colored): <u>control group</u>



#### Data

- Daily station-level retail prices for all available gasoline products across Greek islands in 2010 from the Ministry of Development & Competitiveness (e-prices.gr)
- Socio-economic (education, income, tourists etc) and geographic (size, distance from Piraeus/land) characteristics of each island from the Hellenic Statistical Authority
- Geo-located each gas station and calculated distances
- Key: isolated markets with captive consumers



#### Greek islands



## Competition and Market Size







## Competition and Prices







## Methodology

Difference-in-Differences framework:

$$P_{kist} = \rho Tax_{kt} + \lambda_t + \lambda_{ks} + \varepsilon_{kist}$$

for product k, on island i, in gas station s, on day t.

- Time window: 10-day {τ − 1, τ + 10}
- Controls: product-station FE, day (doy) FE
- Standard errors clustered at the island level
- Identification: control group (heating oil) allows us to identify pass-through



## Parallel Trends BEFORE any changes







## DiD in pictures









## Treatment & Control (excise 1)







## Result 1: almost complete overall pass-through

|                    | 3 days | 7 days | 10 days |
|--------------------|--------|--------|---------|
| excise<br>change 1 | 49%    | 95%    | 96%     |
| excise<br>change 2 | 43%    | 69%    | 87%     |
| excise<br>change 3 | 77%    | 96%    | 97%     |
| ALL                | 59%    | 88%    | 94%     |

#### **Speed of adjustment**

- Pass-through depends on extensive (how many stations adjusted their prices) and intensive (what was the size of the price change) margin.
- Long horizon → no difference,
   short horizon → BIG difference

|                       | (1)                  | (2)                  | (3)                  | (4)                  |  |
|-----------------------|----------------------|----------------------|----------------------|----------------------|--|
| Estimation method     | FE                   | FE                   | FE                   | FE                   |  |
| Dependent variable    | Price <sub>ist</sub> | Price <sub>ist</sub> | Price <sub>ist</sub> | Price <sub>ist</sub> |  |
| Sample                | Excise 1             | Excise 2             | Excise 3             | All excise episodes  |  |
| Tax <sub>it</sub>     | 0.690***<br>(0.087)  | 1.076***<br>(0.111)  | 0.661***<br>(0.097)  | 0.767***<br>(0.069)  |  |
| Observations          | 283                  | 267                  | 365                  | 915                  |  |
| Within R <sup>2</sup> | 0.743                | 0.757                | 0.662                | 0.931                |  |
| Clusters              | 37                   | 41                   | 55                   | 57                   |  |

- Conditional on changing prices pass-through 77% (63%-90%)
- No significant differences across products or excise incidents.



## Methodology

Difference-in-Differences framework:

$$P_{kist} = \rho(n_i, Z_i) Tax_{kt} + \lambda_t + \lambda_{ks} + \varepsilon_{kist}$$

for product k, on island i, in gas station s, on day t. Interaction of Tax with  $n_i$ : number of competitors

- Alternatively, non-parametrically  $\rho(n_i) = \sum_j \rho_j I(n_i = j)$
- ❖ Identification: variation of competition across islands
- $\clubsuit$  Robustness: control for island characteristics ( $Z_i$ ) and use island **population** as **IV**



# Result 2: positive & non-linear relationship between competition and pass-through

|                                             | (1)                  | (4)                  |
|---------------------------------------------|----------------------|----------------------|
| Estimation method                           | FE                   | FE                   |
| Dependent variable                          | Price <sub>ist</sub> | Price <sub>ist</sub> |
| Sample                                      | All excise episodes  | All excise episodes  |
|                                             |                      |                      |
| Tax <sub>it</sub>                           | 0.449***             | 0.139                |
|                                             | (0.091)              | (0.186)              |
| $Tax_{it} \times Number of competitors_s$   | 0.086***             | 0.289***             |
|                                             | (0.020)              | (0.100)              |
| $Tax_{it} \times Number of competitors_s^2$ |                      | -0.025**             |
|                                             |                      | (0.011)              |
| Observations                                | 915                  | 915                  |
| Within R <sup>2</sup>                       | 0.937                | 0.939                |
| Clusters                                    | 57                   | 57                   |



# Result 2: positive & non-linear relationship between competition and pass-through





## Result 2: implied intensity of competition



- If we assume that demand is linear, then behavioral parameter  $\theta = \frac{1-\rho}{\rho}$  can be recovered from estimated pass-through.
- Degree of market power sharply decreases and gets very close to zero with ≥ 4 firms (similar to Bresnahan and Reiss, 1991).



## Robustness: controlling for island characteristics and IV

|                                              | (1)                 | (2)                                                                                                                                         | (3)                 | (4)                 | (5)                                                                                                                                         | (6)                  |
|----------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Estimation method                            | FE                  | FE                                                                                                                                          | IV                  | FE                  | FE                                                                                                                                          | IV                   |
| Dependent variable                           | Priceist            | Priceist                                                                                                                                    | Priceist            | Priceist            | Priceist                                                                                                                                    | Price <sub>ist</sub> |
| Sample                                       | All excise episodes | All excise episodes                                                                                                                         | All excise episodes | All excise episodes | All excise episodes                                                                                                                         | All excise episodes  |
|                                              |                     |                                                                                                                                             |                     |                     |                                                                                                                                             |                      |
| Tax <sub>it</sub>                            | 0.449***            | -0.833                                                                                                                                      | 0.464***            | 0.139               | -0.601                                                                                                                                      | -0.702               |
|                                              | (0.091)             | (0.689)                                                                                                                                     | (0.104)             | (0.186)             | (0.897)                                                                                                                                     | (0.466)              |
| $Tax_{it} \times Number of competitors_s$    | 0.086***            | 0.083**                                                                                                                                     | 0.082***            | 0.289***            | 0.265                                                                                                                                       | 0.821***             |
|                                              | (0.020)             | (0.031)                                                                                                                                     | (0.020)             | (0.100)             | (0.172)                                                                                                                                     | (0.294)              |
| $Tax_{it} \times Number of competitors_s^2$  |                     |                                                                                                                                             | 1 1                 | -0.025**            | -0.023                                                                                                                                      | -0.090**             |
|                                              |                     |                                                                                                                                             | 1 1                 | (0.011)             | (0.018)                                                                                                                                     | (0.037)              |
|                                              |                     |                                                                                                                                             | 1 1                 |                     |                                                                                                                                             |                      |
|                                              |                     | Additional controls include interactions with income, education, number of ports, and airports, distance from Piraeus and tourist arrivals. |                     |                     | Additional controls include interactions with income, education, number of ports, and airports, distance from Piraeus and tourist arrivals. |                      |
| Instruments                                  |                     |                                                                                                                                             | <del> </del>        |                     |                                                                                                                                             |                      |
| First Stage Coef. Population                 |                     |                                                                                                                                             | 0.513***            |                     |                                                                                                                                             | 1.149***             |
|                                              |                     |                                                                                                                                             | (0.069)             |                     |                                                                                                                                             | (0.101)              |
| First Stage Coef. Population <sup>2</sup>    |                     |                                                                                                                                             |                     |                     |                                                                                                                                             | -0.057***            |
|                                              |                     |                                                                                                                                             |                     |                     |                                                                                                                                             | (0.010)              |
| First Stage F-test for Number of competitors |                     |                                                                                                                                             | 54.63***            |                     |                                                                                                                                             | 108.01***            |
| -                                            |                     |                                                                                                                                             | [0.000]             |                     |                                                                                                                                             | [0.000]              |
| First Stage Coef. Population                 |                     |                                                                                                                                             |                     |                     |                                                                                                                                             | 8.246***             |
|                                              |                     |                                                                                                                                             |                     |                     |                                                                                                                                             | (1.131)              |
| First Stage Coef. Population <sup>2</sup>    |                     |                                                                                                                                             |                     |                     |                                                                                                                                             | -0.358***            |
|                                              |                     |                                                                                                                                             |                     |                     |                                                                                                                                             | (0.100)              |
| First Stage F-test for Number of competitors | 2                   |                                                                                                                                             |                     |                     |                                                                                                                                             | 42.01***             |
| UNIVERSITY OF                                |                     |                                                                                                                                             |                     |                     |                                                                                                                                             | [0.000]              |

## Pass-through and speed of adjustment

- How does the adjustment varies over time?
  - Conditional pass-through: conditional on changing prices what was the size of the price change (intensive margin)
  - Average pass-through: pool all stations together independent of whether they adjusted their prices or not (extensive margin)
  - Long horizon → no difference, short horizon → BIG difference
- Does the speed of adjustment depend on competition?
  - Frequency of changes vs. magnitude of changes



## Result 3: Pass-through and speed of adjustment





## Result 3: Competition and speed of adjustment



The conditional pass-through is stable and significantly higher in islands with more competitors.

The average pass-through is significantly higher in islands with more competitors.

At t+1 about double

At t+1 about double
At t+10 about 60% higher





## Competition and frequency of changes



More competitive markets adjust faster to cost shocks because price adjustments are larger AND more frequent! (Gopinath and Itskhoki, 2010)



## Geographic market definition

- What is the right geographical market definition?
- With no clear definition of market boundaries or detailed traffic data, researchers and policy makers define markets based on *arbitrary distances* across gas stations:
  - √ 3-kilometer radius
  - √ 3-kilometer (or 5-kilometer) distance (road structure)
  - √ 5-minute (or 10-minute) drive time (road structure + geography)
- We apply these arbitrary geographical market definitions and compare them with "our" island market definition



## Result 4: Pass-through overestimation







## Result 4: Pass-through overestimation







### Conclusions

- ✓ First systematic examination of how pass-through varies with competition in isolated markets with captive consumers.
- ✓ Unique market set-up: exogenous market structure, unexpected and large changes in excise duties, good exogenous control group.
- ✓ Main results:
- 1) pass-through increases with competition in a non-linear fashion, going from 44% in a monopoly to 100% in markets for ≥ 4 competitors.
- 2) Speed of adjustment is faster in more competitive markets, both due to the size AND the frequency of changes.
- 3) Conventional market definitions based on distance between sellers overestimate the pass-though for markets with up to 3 competitors.



## PASS-THROUGH AND COMPETITION

**Christos GENAKOS** 

University of Cambridge, AUEB, CEP & CEPR

UNIVERSITY OF CAMBRIDGE Judge Business School

